Система состоит

Решение типовых задач. Задача 3.1. Система состоит из трех устройств;

Задача 3.1. Система состоит из трех устройств. Интенсивность отказов типового устройства равна λ1=0,16·10 -3 l/чac=const. Интенсивности отказов двух электромеханических устройств линейно зависят от времени и определяются следующими формулами: λ2=0,23·10 -4 t 1/час, λз=0,06·10 -6 t 2,6 1/час. Необходимо рассчитать вероятность безотказной работы изделия в течение 100 час.

Решение. На основании формулы (3.3) имеем:

Для t=100 час имеем:

Задача 3.2. Система состоит из трех блоков, среднее время безотказной работы которых равно: час; час; час. Для блоков справедлив экспоненциальный закон надежности. Требуется определить среднее время безотказной работы системы.

Решение. Воспользовавшись формулой (3.17) получим:

Здесь λi — интенсивность отказов i -го блока. На основании формулы (3.11) имеем:

λс = λ1 + λ2 + λ3 = .

Здесь λс — интенсивность отказов системы. На основании формулы (3.16) получим:

Задача 3.3. Система состоит из 12600 элементов, средняя интенсивность отказов которых λср=0,32 · 10 -6 1/час. Требуется определить Pc(t), qc(t), fc(t), mtc, для t =50 час.

Здесь Pc(t) — безотказной работы системы в течение времени t;

qc(t) — вероятность отказа системы в течение времени t;

fc(t) — частота отказов или плотность вероятности времени Т безотказной работы системы;

mtc — среднее время безотказной работы системы.

Решение. Интенсивность отказов системы по формуле (3.11) будет

.

Задача 3.4. Система состоит из двух устройств. Вероятности безотказной работы каждого из них в течение времени t =100 час равны: Р1(100)=0,95; Р2(100)=0,97. Справедлив экспоненциальный закон надежности. Необходимо найти среднее время безотказной работы системы.

Решение. Найдем вероятность безотказной работы изделия:

Найдем интенсивность отказов изделия, воспользовавшись формулой:

или , откуда =

= , тогда .

Задача 3.5. Вероятность безотказной работы одного элемента в течение времени t равна P(t)=0,9997. Требуется определить вероятность безотказной работы системы, состоящей из n = 100 таких же элементов.

Решение. Вероятность безотказной работы системы равна:

Вероятность Pc(t) близка к единице, поэтому для ее вычисления воспользуемся формулой (3.18). В нашем случае q(t)=l-P(t)=l-0,9997=0,0003.

Тогда

Задача.3.6.Вероятность безотказной работы системы в течение времени t равна Pc(t)=0,95. Система состоит из n=120 равнонадежных элементов. Необходимо найти вероятность безотказной работы элемента.

Решение. Очевидно, что вероятность безотказной работы элемента будет

Так как P(t) близка к единице, то вычисления P(t) удобно выполнить по формуле (3.18). В нашем случае , тогда:

Задача 3.7. Система состоит из 12600 элементов, средняя интенсивность отказов которых λср =0,32·10 -6 1/час. Необходимо определить вероятность безотказной работы в течение t = 50 час.

Решение. Интенсивность отказов системы по формуле (3.11) будет:

СТРОЕНИЕ НЕРВНОЙ СИСТЕМЫ

Нервная система состоит из извилистых сетей нервных клеток, составляющих различные связанные между собой структуры и контролирующих всю деятельность организма, как желаемые и сознательные действия, так и рефлексы и автоматические действия; нервная система позволяет нам взаимодействовать с внешним миром, а также отвечает за умственную деятельность.

СТРОЕНИЕ НЕРВНОЙ СИСТЕМЫ

Нервная система состоит из различных взаимосвязанных структур, которые вместе составляют анатомическую и физиологическую единицу. Центральная нервная система состоит из органов, расположенных внутри черепа (головного мозга, мозжечка, мозгового ствола) и позвоночника (спинной мозг); отвечает за интерпретацию состояния и различных потребностей организма на основе полученной информации, чтобы затем генерировать команды, предназначенные для получения целесообразных ответов.

Периферическая нервная система состоит из множества нервов, которые идут к головному мозгу (мозговые пары) и спинному мозгу (позвоночные нервы); действует как передатчик сенсорных стимулов мозгу и команд от мозга к органам, ответственным за их выполнение. Автономная нервная система контролирует функции многочисленных органов и тканей через антагонистические эффекты: симпатическая система активируется во время тревоги, а парасимпатическая — в состоянии покоя.

ОСНОВНЫЕ ЭЛЕМЕНТЫ НЕРВНОЙ СИСТЕМЫ:


Центральная нервная система Включает в себя спинной мозг и структуры головного мозга.

Спинной мозг Расположен внутри позвоночника, соединяет высшие нервные центры с периферической нервной системой: передает команды от мозга к нервам, ответственным за их выполнение, и сенсорные стимулы из организма и окружающей среды в мозг.

Головной мозг Часть центральной нервной системы, объединяющая органы, находящиеся в черепной коробке: мозг, мозжечок, мозговой ствол.

Кора головного мозга Контролирует произвольную деятельность и большую часть автоматических, бессознательных функций организма. Является местом, где происходят все ментальные процессы.

Мозжечок Принимает участие в контроле над равновесием тела и моделирует произвольные движения.

Мозговой ствол Состоит из мозговых ножек, варолиева моста и продолговатого мозга, является соединительным звеном между головным и спинным мозгом, в котором находятся нервные центры, контролирующие такие жизненно важные функции, как дыхание и сердечная активность.

Автономная нервная система Автономно и бессознательно регулирует различные функции тела, такие как поддержание температуры, дыхание, пищеварение. Она же вегетативная нервная система.

Периферическая нервная система Нервы человека относятся к периферической нервной системе. Они передают команды центральной нервной системы нервам органов, ответственным за их выполнение (двигательные нервы), и сенсорные стимулы из организма и окружающей среды центральной нервной системе (сенсорные нервы).

НЕЙРОНЫ И МЕДИАТОРЫ


Все структуры нервной системы состоят из ткани одного вида, включающей особые клетки, которые генерируют и передают нервные импульсы, — нейроны, и клетки, обеспечивающие нейронам поддержку, питание и защиту, — нейроглии. В организме присутствуют миллионы нейронов различной формы, вида и размера, схожих по строению. Каждый нейрон имеет клеточное тело, от которого исходят окончания, предназначенные получать и передавать нервные импульсы от одних нейронов к другим: дендриты, ветвистые короткие отростки, получающие импульсы от нервных клеток, и аксон, или цилиндрический отросток, различной длины, заканчивающийся маленькими отростками и отвечающий за передачу нервных импульсов другим нервным клеткам.

Нейроны передают сигналы посредством сложного физико-химического механизма в форме нервных импульсов. В нейроне происходят биохимические изменения, которые высвобождают электрический импульс, проходящий по нервной клетке и аксону, ветви которого передают его прилегающим нейронам. Нервный импульс передается по прилегающим нейронам не прямо, а посредством специального соединения — синапса. Ветви аксонов находятся очень близко от соседних нейронов, но всегда отделены синаптической щелью. Нервный импульс пересекает это пространство посредством химических веществ, называемых медиаторами.

Каждый нейрон вырабатывает специфический медиатор, который хранится в синаптических пузырьках ветвей аксона. Перед тем как нервный импульс достигнет конца аксона, эти пузырьки сбросят свое содержимое в синаптическую щель. Пересекая это пространство, медиатор соединяется с рецепторами, присутствующими на поверхности прилегающих нейронов, и генерирует биохимические изменения в его мембране, — результаты этих изменений зависят от типа медиатора: можно высвободить электрический импульс (синапс-возбудитель) или, наоборот, уменьшить возбудимость (синапс-ингибитор).

БЕЛОЕ И СЕРОЕ ВЕЩЕСТВО

Аксоны многих нейронов покрыты обопочками, состоящими из нескольких слоев, сформированных жирным белым веществом с изоляционными свойствами, очень важными для правипьной передачи нервных импульсов. Эти оболочки называются миелиновыми и состоят из особых клеток олигодендроцитов, которые также называются шванновскими клетками. В органах нервной системы есть зоны, состоящие в основном из тел нейронов, и другие, состоящие только из нервных нитей, соответствующих отросткам нервных клеток — аксонам. В первом случае речь идет о сером веществе, поскольку это доминирующий цвет тел нейронов. Скопление же нервных нитей, каждая из которых окружена миелиновой оболочкой белого цвета, называется белым веществом. Подробнее узнать о клетках нервной системы вы можете в статье: «СТРОЕНИЕ И ФУНКЦИИ НЕЙРОНОВ».

Читать еще:  Сколиоз 3 степени как лечить

Система отсчёта в физике — что это, определение и виды

Определение понятия система отсчёта в физике и механике включает в себя совокупность, которая состоит из тела отсчёта, системы координат, а также времени. Именно по отношению к этим параметрам изучается движение материальной точки или же состояние её равновесия.

С точки зрения современной физики, всякое движение можно признать относительным. Таким образом, любое движение тела можно рассматривать исключительно по отношению к другому материальному объекту или же совокупности таких объектов. Например, мы не можем указать, каков характер движения Луны в общем, но может определить её перемещение относительно Солнца, Земли, Звёзд, других планет и пр.

В ряде случаев подобная закономерность бывает связана не с единой материальной точкой, а с множеством базовых точек отсчёта. Эти базовые тела отсчёта могут задавать совокупность координат.

Основные составляющие

Основными составляющими любой системы отсчёта в механике можно считать следующие компоненты:

  1. Тело отсчёта – это физическое тело, по отношению к которому определяется изменение положения в пространстве других тел.
  2. Совокупность координат, которая связывается с этим телом. В этом случае она представляет собой точку отсчёта.
  3. Время – это момент начала отсчитывания времени, который необходим, чтобы определить нахождение тела в пространстве в любой момент.

Для того чтобы решить конкретную задачу, необходимо определить наиболее подходящую для этого сетку координат и структуру. Идеальные часы в каждой из них потребуются лишь одни. В этом случае начало, тело отсчёта и векторы координатных осей можно выбирать произвольно.

Это интересно: формула всемирного тяготения — определение закона.

Основные свойства

Эти структуры в физике и геометрии имеют ряд существенных различий. К физическим свойствам, которые учитываются при построении и решении задачи, относятся изотропность и однородность.

Под однородностью в физике принято понимать тождественность всех точек в пространстве. Этот фактор имеет в физике немаловажное значение. Во всех точках Земли и Солнечной системы в целом законы Ньютона в физики действуют абсолютно идентично. Благодаря этому начало отсчёта может быть размещено в любой удобной точке. И если исследователь поворачивает сетку координат вокруг начальной точки, при этом никакие другие параметры задачи не будут изменяться. Все направления, которые начинаются от этой точки, имеют абсолютно тождественные свойства. Такая закономерность называется изотропностью пространства.

Это интересно: энтропия — это что такое, где применяется термин?

Виды систем отсчёта

Существует несколько видов — подвижные и неподвижные, инерциальные и неинерциальные.

Если такая совокупность координат и времени требуется для проведения кинематических исследований, в этом случае все подобные структуры являются равноправными. Если же речь идёт о решении динамических задач, предпочтение отдаётся инерциальным разновидностям – в них движение имеет более простые характеристики.

Инерциальные системы отсчёта

Инерциальными называют такие совокупности, в которых физическое тело сохраняет состояние покоя или продолжает равномерно передвигаться, если на него не воздействуют внешние силы или суммарное воздействие этих сил равняется нулю. В этом случае на тело действует инерция, что и даёт название системе.

  1. Существование таких совокупностей подчиняется первому закону Ньютона.
  2. Именно в таких сетках возможно наиболее простое описание движения тел.
  3. По существу, инерциальная структура — это всего лишь идеальна математическая модель. Найти такую структуру в физическом мире не представляется возможным.

Одна и та же совокупность в одном случае может считаться инерциальной, а в другом будет признана неинерциальной. Это происходит в тех случаях, когда погрешность в результате неинерциальности слишком ничтожна и ею можно свободно пренебречь.

Неинерциальные системы отсчёта

Неинерциальные разновидности наравне с инерциальными связываются с планетой Земля. Учитывая космические масштабы, считать Землю инерциальной совокупностью можно весьма грубо и приблизительно.

Отличительной чертой неинерциальной системы является то, что она перемещается по отношению к инерциальной с некоторым ускорением. В этом случае законы Ньютона могут утратить свою силу и требуют введения дополнительных переменных. Без этих переменных описание такой совокупности будет недостоверным.

Проще всего рассматривать неинерциальную систему на примере. Такая характеристика движения характерна для всех тел, которые имеют сложную траекторию движения. Наиболее ярким примером такой системы можно считать вращение планет, в том числе и Земли.

Движение в неинерциальных системах отсчёта впервые изучено Коперником. Именно он доказал, что движение с участием нескольких сил может быть весьма сложным. До этого считалось, что движение Земли относится к инерциальным и описывалось оно законами Ньютона.

Система состоит

Кровеносная система — физиологическая система, состоящая из сердца и кровеносных сосудов, обеспечивающая замкнутый круговорот крови. Вместе с лимфатической системой входит в состав сердечно-сосудистой системы.

Кровообращение — циркуляции крови в организме. Кровь может выполнить свои функции, только циркулируя в организме. Система opганов кровообращения: сердце (центральный opган кровообращения) и кровеносные сосуды (артерии, вены, капилляры).

Кровеносная система человека замкнутая, состоит из двух кругов кровообращения и четырёхкамерного сердца (2 предсердия и 2 желудочка). Артерии проводят кровь от сердца; в их стенках много мышечных клеток; стенки артерий эластичны. Вены проводят кровь к сердцу; их стенки менее упругие, но более растяжимые, чем артериальные; имеют клапаны. Капилляры осуществляют обмен веществ между кровью и клетками организма; их стенки состоят из одного слоя эпителиальных клеток.

Строение сердца

Сердце — центральный орган кровеносной системы, его ритмические сокращения обеспечивают циркуляцию крови в организме (рис. 4.15). Это полый мышечный орган, расположенный преимущественно в левой половине грудной полости. Масса сердца взрослого человека — 250—350 г. Стенка сердца образована тремя оболочками: соединительнотканной (эпикард), мышечной (миокард) и эндотелиальной (эндокард). Сердце расположено в соединительнотканной околосердечной сумке (перикард), стенки которой выделяют жидкость, увлажняющую сердце и уменьшающую его трение при сокращениях.

Сердце человека — четырёхкамерное: сплошная вертикальная перегородка делит его на левую и правую половины, каждая из которых при помощи поперечной перегородки со створчатым клапаном разделена на предсердие и желудочек. При сокращении предсердий створки клапанов провисают внутрь желудочков, обеспечивая переход крови из предсердий в желудочки. При сокращении желудочков кровь давит на створки клапанов, в результате они поднимаются и захлопываются. Натяжение сухожильных нитей, прикреплённых к внутренней стенке желудочка, предотвращает выворачивание створок в полость предсердий.

Кровь выталкивается из желудочков в сосуды — аорту и лёгочный ствол. В местах выхода этих сосудов из желудочков находятся полулунные клапаны,, имеющие вид кармашков. Прижимаясь к стенкам сосудов, они пропускают в них кровь. При расслаблении желудочков кармашки клапанов заполняются кровью и закрывают просвет сосудов для предотвращения обратного тока крови. В итоге обеспечивается односторонний ток крови: из предсердий в желудочки и из желудочков в артерии.

Для работы сердца необходимо значительное количество питательных веществ и кислорода. Кровоснабжение сердца начинается двумя коронарными (венечными) артериями, которые отходят от начальной расширенной части аорты (луковицы аорты). Они снабжают кровью стенки сердца. В сердечной мышце кровь собирается в сердечные вены. Они сливаются в венечный синус, впадающий в правое предсердие. Ряд вен открывается непосредственно в полость предсердия.

Работа сердца

Функции сердца заключается перекачке крови из вен в артерии. Сердце сокращается ритмично: сокращения чередуются с расслаблениями. Сокращение отделов сердца называется систолой, а расслабление диастолой. Сердечный цикл — период, охватывающий одно сокращение и одно расслабление. Он продолжается 0.8 с и состоит из трех фаз:

  • I фаза — сокращение (систола) предсердий — длится 0,1 с;
  • II фаза — сокращение (систола) желудочков — длится 0,3 с;
  • III фаза — общая пауза — и предсердия и желудочки расслаблены — длится 0,4 с.
Читать еще:  Скамья для позвоночника

В состоянии покоя частота сердечных сокращений взрослого человека составляет 60—80 раз в 1 мин, у спортсменов 40—50, у новорожденных 140. При физической нагрузке сердце сокращается чаще, при этом продолжительность общей паузы сокращается. Количество крови, выбрасываемое сердцем за одно сокращение (систолу), называется систолический объем крови. Он составляет 120—160 мл (60—80 мл для каждого желудочка). Количество крови, выбрасываемое сердцем за одну минуту, называется минутный объем крови. Он составляет 4,5—5.5 л.

Частота и сила сердечных сокращений зависят от нервной и гуморальной регуляции. Сердце иннервируется автономной (вегетативной) нервной системой: регулирующие его деятельность центры находятся в продолговатом и спинном мозге. В гипоталамусе и коре больших полушарий находятся центры регуляции сердечной деятельности, обеспечивающие изменение частоты сердечных сокращений при эмоциональных реакциях.

Электрокардиограмма (ЭКГ) запись биоэлектрических сигналов от кожи рук и ног и от поверхности грудной клетки. ЭКГ отражает состояние мышцы сердца. При работе сердца возникают звуки, называемые тонами сердца. При некоторых заболеваниях характер тонов изменяется и появляются шумы.

Кровеносные сосуды

Кровеносные сосуды делят на артерии, капилляры и вены.

Артерии — сосуды, по которым кровь под давлением двигается от сердца. Они имеют плотные эластичные стенки, состоящие из трёх оболочек: соединительнотканной (наружной), гладкомышечной (средней) и эндотелиальной (внутренней). По мере удаления от сердца артерии сильно ветвятся на более мелкие сосуды — артериолы, которые распадаются на тончайшие сосуды — капилляры.

Стенки капилляров очень тонкие, они образованы лишь слоем эндотелиальных клеток. Через стенки капилляров происходит газообмен между кровью и тканями: кровь отдаёт тканям большую часть растворённого в ней О2 и насыщается СО2 (превращается из артериальной в венозную); из крови в ткани переходят также питательные вещества, а обратно — продукты обмена веществ.

Из капилляров кровь собирается в вены — сосуды, по которым кровь под небольшим давлением переносится в сердце. Стенки вен снабжены клапанами в виде карманов, препятствующими обратному движению крови. Стенки вен состоят из тех же трёх оболочек, что и артерии, однако мышечная оболочка развита слабее.

Кровь движется по сосудам благодаря сокращениям сердца, создающим разницу давлений крови в разных частях сосудистой системы. Кровь течет от места, где ее давление выше (артерии), туда, где ее давление ниже (капилляры, вены). В то же время движение крови по сосудам зависит от сопротивлении стенок сосудов. Количество крови, проходящей через opгaн, зависит от разности давлений в артериях и венах этого органа и сопротивления течению крови в eго сосудистой сети.

Для движения крови по венам недостаточно одного давления, создаваемою сердцем. Этому способствуют клапаны вен, обеспечивающие ток крови в одном направлении; сокращение близлежащих скелетных мышц, которые сжимают стенки вен, проталкивая кровь к сердцу; присасывающее действие крупных вен при увеличении объема грудной полости и отрицательное давление в ней.

Кровообращение

Кровеносная система человека — замкнутая (кровь движется только по сосудам) и включает два круга кровообращения.

Большой круг кровообращения начинается в левом желудочке, из которого артериальная кровь выбрасывается в самую крупную артерию — аорту. Аорта описывает дугу и затем тянется вдоль позвоночника, разветвляясь на артерии, несущие кровь к верхним и нижним конечностям, голове, туловищу и внутренним органам. В органах расположены сети капилляров, пронизывающие ткани и доставляющие кислород и питательные вещества. В капиллярах кровь превращается в венозную. Венозная кровь по венам собирается в два крупных сосуда — верхнюю полую вену (кровь от головы, шеи, верхних конечностей) и нижнюю полую вену (остальные части тела). Полые вены открываются в правое предсердие.

Малый круг кровообращения начинается в правом желудочке, из которого венозная кровь по лёгочному стволу, распадающемуся на две лёгочные артерии, переносится к лёгким. В лёгких они распадаются на капилляры, оплетающие лёгочные пузырьки (альвеолы). Здесь происходит газообмен, и венозная кровь превращается в артериальную. Обогащённая кислородом кровь по лёгочным венам возвращается в левое предсердие. Таким образом, по артериям малого круга кровообращения течёт венозная кровь, а по венам — артериальная.

Кровяное давление и пульс

Кровяное давление – это давление, при котором кровь находится в кровеносном сосуде. Наиболее высокое давление в аорте, меньше в крупных артериях, еще меньше и капиллярах и самое низкое в венах.

Кровяное давление у человека измеряют с помощью ртутного или пружинного тонометра в плечевой артерии (артериальное давление). Максимальное (систолическое) давление давление во время систолы желудочков (110—120 мм pт. ст.). Минимальное (диастолическое) давление давление во время диастолы желудочков (60 80 мм рт. ст.). Пульсовое давление разность между систолическим и диастолическим давлением. Повышение кровяного давлении называется гипертонией, понижение — гипотонией. Повышение артериального давлении происходит при тяжелой физической нагрузке, понижение — при больших кровопотерях, сильных травмах, отравлениях и др. С возрастом эластичность стенок артерий уменьшается, поэтому давление в них становится выше. Нормальное кровяное давление организм регулирует с помощью введении или изъятия крови из кровяных депо (селезенки, печени, кожи) или с помощью изменении просвета сосудов.

Движение крови по сосудам возможно благодаря разности давлений в начале и в конце круга кровообращения. Кровяное давление в аорте и крупных артериях составляет 110—120 мм рт. ст. (то есть на 110—120 мм рт. ст. выше атмосферного); в артериях 60—70, в артериальном и венозном концах капилляра — 30 и 15 соответственно; в венах конечностей 5—8, в крупных венах грудной полости и при впадении их в правое предсердие почти равно атмосферному (при вдохе несколько ниже атмосферного, при выдохе несколько выше).

Артериальный пульс – это ритмичные колебании стенок артерий в результате поступления крови в аорту при систоле левого желудочка. Пульс можно обнаружить на ощупь там. где артерии лежат ближе к поверхности тела: в области лучевой артерии нижней трети предплечья, в поверхностной височной артерии и тыльной артерии стопы.

Это конспект по теме «Кровеносная система. Кровообращение». Выберите дальнейшие действия:

Из чего состоит система отопления – подбор составляющих

Сделать систему отопления — значит правильно подобрать и верно смонтировать все ее составляющие. Сейчас не продается готовой системы отопления. Ее нужно собрать из различных компонентов. Это могут сделать специалисты, но тогда стоимость удвоится по сравнению, если делать своими руками.

Если в результате расчетов, или по типовым решениям, выбраны основные параметры, — мощность системы, схема разводки, способ движения жидкости, мощность радиаторов, диаметры трубопроводов, то можно приступать и к выбору других компонентов системы. Основные из них будут теплоноситель, котел, радиаторы, вид трубопроводов, и распределение радиаторов по комнатам.

Теплоноситель


Теплоноситель – чаще обычная вода, с ней меньше проблем. Но если есть риск замораживания системы, например, в случае отъезда хозяев или перебоя поступления энергоносителей, который невозможно устранить в кратчайшие сроки, то систему нужно заливать незамерзайкой.

Тогда лучше заранее подобрать и компоненты системы под теплоноситель, так как у незамерзайки меньшая теплоемкость и она может быть агрессивна по отношению к некоторым материалам, например, к определенным видам резинотехнических изделий в радиаторах, к элементам котла…

С незамерзайкой много проблем. Нельзя применять от «неизвестного производителя» — будет разрушена система. Фирменная жидкость не дешевая, и ее нужно обязательно менять в положенные сроки службы. В общем применение незамерзайки вместо обычной воды — весьма вынужденная мера и у нее должны быть веские основания.

Котел — основа системы отопления

В котле происходит сгорание топлива и нагревание теплоносителя, который по трубам подается к радиаторам, нагревающим воздух в помещении.

Топливом для котла отопления может быть:

  • Природный газ подаваемый по трубам — сейчас наиболее популярный, дешевый, удобный вид топлива для котлов в частных домах. Выбор газовых котлов велик. Они работают автоматически.
  • Твердое топливо — уголь, торф, дрова — наиболее надежный источник энергии. Для работы твердотопливного котла не нужна электроэнергия, поэтому иногда такие котлы просто не заменимы. Но они неудобны в эксплуатации, требуют постоянного обслуживания. Тем не менее, они (или печь) находятся практически в каждом доме в качестве резервного источника обогрева, с газовым котлом, или в качестве основного источника, если газового котла нет…
  • Жидкое топливо — солярка, бензин — наиболее дорогое, требуется емкость для хранения и подачи, возникает запах. Котлы на жидком топливе устанавливаются редко, если нет особой альтернативы.
  • Электричество — также не дешевый вид энергии. К тому же энергонадзор далеко не везде разрешит подключить мощный (до 15 кВт) электрокотел. Впрочем, из-за удобства применения и обслуживания такой вид энергии имеет некоторую популярность, несмотря на дороговизну, особенно там, где нет газа.
  • Природное тепло, может служить источником для обогрева дома. Это тепло грунта или водоема, тепло окружающего воздуха, даже если его температура опустилась до отметки 15 град ниже 0. А роль котла выполнить тепловой насос, который умеет насосать тепло прямо из под земли у дома или отобрать его у ветра в морозную погоду.
Читать еще:  Синяк на ноге сколько проходит

Преимущество этой системы — бесплатная энергия и несомненная прогрессивность технологии. Недостатки — дороговизна, сложность создания и поддержания работоспособности. К тому же чаще в нашем климате мощности теплового насоса не хватает и требуется дополнительный котел на обычном топливе.

Обычный выбор сейчас – настенный газовый автоматизированный котел – максимум удобства, при минимуме затрат. Если нет природного газа, то более экономичный вариант — твердотопливный котел с паре с электрическим. Вариант подороже — газгольдер или пеллетный котел.

Трубы могут быть медными, стальными, металлопластиковыми из сшитого полиэтилена или полипропиленовыми.

Последние, полипропиленовые трубы все более популярны, они намного дешевле всех остальных видов, их фитинги сравнительно «стоят копейки». К тому же монтаж тоже дешев, сделать его на первый взгляд очень просто и своими руками с помощью сварного аппарата (паяльника).

Но в монтаже и кроется огромный недостаток этого трубопровода. Невозможно визуально оценить качество сварки фитинга и трубы. При этом не редко, когда внутренний диаметр труб уменьшается в месте сварки в разы из-за наплыва материала при его перегреве.

Или когда стык по прошествии времени начинает течь из-за недогрева. Выявить все это можно только в процессе эксплуатации по нарушениям работы системы. После чего нужно переделывать. Тем не менее из-за дешевизны все эти риски «берет на себя» владелец системы, и трубы наиболее популярные….

Металлопластиковые на втором месте по популярности. Их фитинги из латуни и стали не дешевые, делятся на обжимные и компрессионные. Обжимные самые надежные, но их монтаж с гарантией качества делается только специалистами с помощью специального дорогостоящего инструмента.

Стыковка с компрессионными также требует только профессионального подхода, иначе возможен брак. Но качество работы можно отследить в процессе монтажа, соединения получаются обычно очень надежными, поэтому многие специалисты предпочитают металлопластик.

К тому же система получается более презентабельной на вид. Но трубы боятся ударов, на них нельзя становится. Из металлопластика не редко делают всю систему отопления а также эти трубуы всегда применяются при лучевой схеме и в системе теплого пола, а также везде для скрытой прокладки.

Медные трубы или из нержавеющей стали (не путать со стальными) применяются не часто из-за дороговизны и трудностей монтажа. Обычно из них делают подсоединения в котельной, реже всю систему. Выглядят такие трубы презентабельно, очень надежны.

Толстостенные трубы из сшитого полиэтилена особых преимуществ не имеют, но для их обжима на специальных фитингах требуется дорогостоящий инструмент. К тому же сами трубы не совсем ровные. Применяются редко.

Обычный выбор сейчас – полипропиленовый трубопровод, с которым хоть и имеются риски некачественного монтажа, но они окупаются дешевизной.
О выборе диаметров трубопроводов для отопления можно подробней узнать и на данном ресурсе.

Популярные ранее чугунные радиаторы все более уступают место современным стальным, биметаллическим, алюминиевым. Наиболее дешевые алюминиевые секционные имеют опрятный внешний вид и достаточную надежность и долговечность в любых системах отопления.

Их прямой конкурент — панельные (состоящие из неразборной панели) стальные радиаторы, представляются незаменимыми, если в системе незамерзайка – нет опасности течи на стыках секций радиатора.

Биметаллические особых преимуществ не имеют, разве что в некоторой долговечности при значительном загрязнении жидкости в центральных системах отопления, за счет большей сопротивляемости к износу.

Батареи в основном достаточно подобрать только лишь по внешнему виду. Исключение составляют системы в многоэтажных домах, где имеется повышенное давление или для самотечной системы, где требуется низкое гидравлическое сопротивление.

Распределение радиаторов по мощности

А в подборе мощности радиаторов требуется рассмотреть теплопотери каждой комнаты. Например, имеются две комнаты одинаковой площади, — комната с короткой наружной стеной и небольшим окном и угловая комната с двумя наружными стенами и большими окнами. Ясно, что у второй комнаты минимум в 3 раза больше теплопотери и туда нужно минимум в 3 раза больше мощность радиаторов, чем в первую.

Есть также рекомендации опираться на площадь, но они весьма приблизительны.
— для комнаты с одной наружной стеной и одного окна – 1,1 кВт на 10 м кв.
— для двух наружных стен и одного окна – 1,3 кВт на 10 м кв.;
— для двух наружных стен и двух окон – 1,5 кВт на 10 м кв.;
— для внутренних комнат — радиаторы не нужны
— для внутренней комнаты с одной стеной и наружной дверью – 10 кВт на 10 м кв.
В общем, нужно взять план комнат и «разбросать» общую мощность. Нельзя забывать, что радиатор должен располагаться под каждым полноценным окном в стене, для нормального распределения тепла в комнате.

Особенности подбора и установки радиаторов

При выборе радиаторов в магазине нужно обратить внимание не только на паспортную тепловую мощность, но и на перепад температур при которой эта мощность отдается.

Скорее всего, теплоноситель будет нагреваться не более чем на 60 градусов а остывать до 40 градусов (параметры задаются оптимальным режимом котла), в то же время для радиатора указан перепад температур при которых отдается паспортная мощность — 90/70, следовательно, нужно выбирать радиаторы помощнее процентов на 25 — 35, но консультацию к конкретной модели даст продавец.

Также отдаваемая мощность радиатора будет зависеть и от схемы его подключения к трубопроводам и от места его установки. Так, если радиатор подключить только снизу и закрыть декоративным кожухом, поместить в нишу, то его КПД станет меньше чем 0,7. Лучшая схема подключения – диагональная, подача сверху обратка с другой стороны снизу. Короткие радиаторы подключаются и возвратноточно – подача сверху и обратка снизу с одной стороны.

После подбора основных компонентов системы, нужно переходить к второстепенным. Сборка системы не такая уж и простая, за нее можно браться если «умеете крутить гайки», т.е. имеются навыки ведения сантехнических работ. Не сложно смонтировать отопление на основе полипропиленового или металлопластикового трубопроводов, но конечно же предварительно нужно подобрать и «мелочь», знать типовые схемы, размещение и вид всей запорной арматуры… В общем, создание отопления своими руками процесс не легкий, но, как правило, благодарный.

Ссылка на основную публикацию
×
×
Adblock
detector